D esilylative elimination of the quinazolinone ring from 1-(4-oxoquinazolin-3-yl)-2-silylaziridines; preparation of an $\mathrm{N}-\mathrm{H}$ aziridine in high enantiomeric excess by in situ nucleophilic addition to the derived azirine

Robert S. A tkinson, M ichael P. C oogan and Ian S. T. L ochrie
Department of Chemistry, U niversity of Leicester, Leicester LE17RH, UK

Abstract

A ziridination of vinylsilanes $\mathrm{PhCH}=\mathrm{CHSR}_{3}(\mathrm{R}=\mathrm{Me}, \mathrm{Et}, \mathrm{Ph})$ with enantiopure 3-acetoxyaminoquinazolinone 11 gives the corresponding aziridines 12 [diastereoisomer ratio (dr) 10:1], 18 ($\mathrm{dr} 13: 1$) and 20 (dr 2:1). D esilylative elimination of the quinazolinone from these aziridines by caesium fluoride in the presence of cyanide gives aziridine 14 by cyanide addition to the 3 -unsubstituted azirine 13 , produced in situ. A cylation of aziridine 14 with (S)-acetoxypropionyl chloride gives N -acylaziridine 16; the good correlation between the diastereoisomer ratios of aziridines 12,18 and 20 and those of the N -acylaziridine 16 produced in each case suggests that intermediate azirine 13 is configurationally stable.

There are a small number of methods available for the synthesis of azirines by elimination of two adjacent substituents on an aziridinering (Scheme 1). ${ }^{1}$

Scheme 1
The importance of these methods is that they provide access to enantiopure azirines from enantiopure aziridines: other routes to azirines do not lend themselves to the preparation of single enantiomers.

We have shown previously that one example of the conversion shown in Scheme 1 is that shown in Scheme 2. ${ }^{2} \mathrm{H}$ ere, fluor-

Scheme 2 Reagents and conditions: i, $\mathrm{Pb}(\mathrm{OAC})_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-20^{\circ} \mathrm{C}$, ii, 1-phenyl-1-trimethylsilylethene, CsF, D M F
ide mediated elimination of SiM_{3} and the quinazolinone ring (Q) from aziridine $\mathbf{3}$ gives 3-phenylazirine $\mathbf{4}$ in good yield.

3-A cetoxyaminoquinazolinones, e.g. 2 (QN HOA c; prepared from 3 -aminoquinazolinones 1), are efficient aziridinating agents for a range of alkenes including vinylsilanes. Ringopening of the derived aziridine ring, followed by $\mathrm{N}-\mathrm{N}$ bond cleavage, provides a route to useful (Q-free) products. ${ }^{3} \mathrm{H}$ owever, the aziridine to azirine conversion $\mathbf{3} \longrightarrow \mathbf{4}$ is the only way we have found so far to cleave the $\mathrm{Q}-\mathrm{N}$ bond and retain the threemembered ring.

We have also shown previously that desilylative elimination of Q from the aziridine $\mathbf{6}$ gives aziridine 8 (Scheme 3). ${ }^{4}$ This aziridine to azirine to aziridine transformation arises from readdition of Q^{-}to the intermediate azirine $\mathbf{7}$ as a consequence of the greater reactivity of 3 -unsubstituted azirines towards nucleophilic attack.
The present work ${ }^{5}$ was undertaken with two aims: (i) to intercept the reactive 3 -unsubstituted azirines e.g. 7, produced

Scheme 3
in situ in Scheme 3, with nucleophiles other than Q^{-}and thus to prepare useful Q-free aziridines; (ii) to use this aziridine to azirine to aziridine conversion to prepare enantiopure Q -free aziridines.

A ziridination of β-trimethylsilylstyrene 5 was carried out with the previously prepared 3 -acetoxyaminoquinazolinone $11\left(Q * \mathrm{NHOAC}^{6}\right.$ (Scheme 4) in which the quinazolinone 2substituent is derived from (S)-lactic acid. $\mathrm{Q} * \mathrm{NHOAc} 11$ is prepared in situ by N -acetoxylation of 3 -aminoquinazolinone 10: the yield for the preparation of silyl ether $\mathbf{1 0}$ from the corre sponding alcohol 9 has been improved. Theyield of aziridine 12 was significantly improved in the presence of hexamethyldisilazane (HMDS).
The ${ }^{1} \mathrm{H}$ NMR spectrum of aziridine $\mathbf{1 2}$ was complicated by the presence of invertomers at the aziridine nitrogen (ratio 1.6:1). A ssignments of the relative configuration at this ring nitrogen in both invertomers of $\mathbf{1 2}$ (Scheme 4) were made from the effect on their equilibrium ${ }^{7}$ ratio of the change from trimethylsilyl to triethylsilyl (see below): these assigments are also consistent with the expected deshielding effect of the quinazolinone (carbonyl) on the cis-substituted aziridine ring proton ${ }^{7}$ (see appended chemical shifts of these protons in both invertomers of aziridine 12).

A ziridination using 3 -acetoxyaminoquinazolinones is invariably stereospecific with retention of the alkene configuration in the aziridine product. ${ }^{8}$ In the ${ }^{1} \mathrm{H}$ N M R spectrum of aziridine 12 there were only two sets of signals and their assignment to diastereoisomers differing in configuration at the aziridine ring nitrogen (N -invertomers) rather than at both aziridine ring chiral centres was eventually confirmed by the transformations outlined below. In the ${ }^{13} \mathrm{C} N \mathrm{M}$ R spectrum of aziridine 12 , however, three of the four aziridine ring carbons (2 invertomers) were accompanied by a small peak which suggested the pres-

Scheme 4 Reagents and conditions: i, $\mathrm{Pb}(\mathrm{OAC})_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-20^{\circ} \mathrm{C}$, ii, 5, HMDS, iii, CsF, DM F, KCN, iv, (S)-CH $\mathrm{C}_{3} \mathrm{CH}(\mathrm{OAc}) \mathrm{COCl}, \mathrm{NEt}_{3}, \mathrm{v}, \mathrm{H}_{2}$, $\mathrm{Pd} / \mathrm{C}, \mathrm{Ac}_{2} \mathrm{O}$
ence of the minor diastereoisomer (ratio major : minor $\sim 11: 1$). This minor diasteroisomer, apparently also present as a mixture of N -invertomers, will, as indicated above, have the same relative configuration but opposite absolute configurations at the aziridine ring carbon centres compared with those of the major diastereoisomer.
A ziridine 14^{9} (Scheme 4) mp $58-60^{\circ} \mathrm{C}[a]_{\mathrm{D}}-153.1$ (c 1.0 , EtOH), was isolated in 76\% yield by desilylative elimination of Q* from aziridine $\mathbf{1 2}$ with caesium fluoride in DM F in the presence of potassium cyanide (3 equiv.). The relative configuration at its ring carbons follows from the magnitude of the coupling constant between the protons at these positions (2.5 Hz) which is characteristic for trans aziridine ring protons and hence a trans $\mathrm{Ph} / \mathrm{CN}$ relationship. ${ }^{10}$ Addition of cyanide to the 3 unsubstituted azirine 13, therefore, is highly stereoselectively anti to the 2-phenyl group.
The absolute configuration at these aziridine ring positions was assigned as $2 R, 3 S$ after hydrogenation and in situ acetylation to give 2-acetylamino-3-phenylpropionitrile $15,[a]_{\mathrm{D}}+45.1$ (c $0.78, \mathrm{EtOH}$), a rotation of opposite sign to that reported $\left([a]_{\mathrm{D}}-56.8^{11}\right)$ for a sample prepared from (S)-phenylalanine. The enantiopurity of aziridine $\mathbf{1 4}$ (83% ee) was determined by reaction with enantiopure (S)- α-acetoxypropionyl chloride to give the two diastereoisomers of aziridine 16 (ratio $10: 1$ by comparison with a 1:1 mixture prepared by its reaction with racemic 2-acetoxypropionyl chloride).

A ziridination of β-triethylsilylstyrene $\mathbf{1 7}$ with $\mathrm{Q} * \mathrm{~N}$ H OAc $\mathbf{1 1}$ (Scheme 5) yielded results analogous to those above In aziridine 18, the N -invertomer ratio was now 3.7:1 and there is an excellent correlation between the chemical shifts of aziridine ring proton signals in both major and minor invertomers of aziridines $\mathbf{1 2}$ and $\mathbf{1 8}$ (Table 1).

With the reasonable assumption that an increase in the size of the trialkylsilyl group favours that invertomer having this group and the Q^{*} group trans, the configuration at the aziridine

Table 1 Chemical shift (δ) correlation between major and minor N invertomers of aziridines 12 and 18

	$\delta_{\mathbf{H}}(\mathrm{ppm})$	
	Signal	$\mathbf{1 2}$

$11+$

Scheme 5
ring nitrogen in major and minor invertomers of $\mathbf{1 2}$ and $\mathbf{1 8}$ can be assigned as illustrated in Schemes 4 and 5.
The presence of both diastereoisomers of aziridine $\mathbf{1 8}$ was indicated by the presence of additional small doublets for the aziridine ring protons in its ${ }^{1} \mathrm{H}$ N M R spectrum in $\mathrm{C}_{6} \mathrm{D}_{6}$ at $\delta 4.2$, 3.58, 3.32 and 2.18 (2 N -invertomers) besides the larger doublets at $\delta 4.30,3.45,3.10$ and 2.25 (ratio major :minor diastereoisomers ~13:1).

Desilylative elimination of Q* from aziridine $\mathbf{1 8}$ in the presence of potassium cyanide, following the procedure in Scheme 4, and reaction of the aziridine 14 obtained with (S)-2-acetoxypropionyl chloride gave N -acylaziridine $\mathbf{1 6}$ as a 13:1 ratio of diastereoisomers (ee 86\%).

A ziridination of β-triphenylsilylstyrene 19 with Q*N HOAc 11 in the presence of H M DS gave aziridine $\mathbf{2 0}(\mathbf{4 1 \%}$) as a $2: 1$ ratio of diastereoisomers. A crystalline sample of the minor diastereoisomer was obtained by trituration with light petroleum and, from its ${ }^{1} \mathrm{H} N \mathrm{~N}$ R spectrum, is present in solution as a $1: 1$ ratio of N-invertomers. Examination of the ${ }^{1} H N M R$ spectrum of the crude reaction mixture revealed that the major diastereoisomer consisted of two invertomers (ratio 1.5:1). \dagger U nlike aziridine $\mathbf{1 2}$ the aziridine ring proton signals in the N M R spectra of both diastereoisomers of $\mathbf{2 0}$ are clearly anisochronous.
A sample of aziridine $\mathbf{2 0}$ containing a $5: 1$ ratio of major: minor diastereoisomers, recovered after removal of the bulk of the crystalline minor diastereoisomer, was also subjected to desilylative elimination of Q^{*} in the presence of potassium cyanide as in Scheme 4 above. Derivatisation of the resulting aziridine $\mathbf{1 4}$ in this case gave a 5:1 ratio of diastereoisomers of N -acylaziridine 16.

The correlation in each case between the diastereoisomer ratios in aziridines $\mathbf{1 2}, \mathbf{1 8}$ and $\mathbf{2 0}$ and those in the derived aziridine $\mathbf{1 6}$ suggests that azirine 13 is configurationally stable under the reaction conditions.

Confirmation of the absolute configuration of the major diastereiosomers of aziridines $\mathbf{1 2 , 1 8}$ and $\mathbf{2 0}$ was provided by an X-ray crystal structure of the minor diastereoisomer of the β-triphenylsilylstryrene-derived aziridine $\mathbf{2 0 .}^{13}$

The preferred sense of diastereoselectivity in formation of aziridines $\mathbf{1 2 , 1 8}$ and $\mathbf{2 0}$ is the same in each case since they all give the same major diastereoisomer of N -acylaziridine 16 when each is subjected to the desilylative-elimination/acylation procedure in Scheme 4. With the known relative configuration

[^0]of the chiral centres in the minor diastereoisomer of aziridine 20 (X-ray) and the known absolute configuration of the chiral centre in the quinazolinone 2-position [derived from (S)-lactic acid], the stereostructures of the major diastereoisomers of $\mathbf{1 2}$, 18 and $\mathbf{2 0}$ can be deduced and are as illustrated in Schemes 4 and 5.

F urther work to establish the generality of the $\mathrm{N}-\left(\mathrm{Q}^{*}\right)$ aziridine to azirine to aziridine interconversion is in progress together with an examination of the origin of the unexpectedly high diastereoselectivity in the aziridination of vinylsilanes $\mathbf{5}$ and $\mathbf{1 7}$ with $\mathrm{Q} * \mathrm{NHOAC} 11 .{ }^{13}$

Experimental

U nless otherwise indicated, ${ }^{1} \mathrm{H}$ N M R spectra were run at $25^{\circ} \mathrm{C}$ and 250 M Hz in CDCl_{3} solution with SiM_{4} as internal standard and ${ }^{13} \mathrm{C}$ spectra at 75 M Hz in the same solvent. IR Spectra were run as solutions in dichloromethane. Optical rotations were measured using a Perkin-Elmer 341 Polarimeter and are recorded in units of 10^{-1} deg $\mathrm{cm}^{2} \mathrm{~g}^{-1}$. For other instrumentation and general experimental details see ref. 14 .

Improved procedure for preparation of 3-amino-2-[(1S)-1-tert-

 butyldimethyIsilylox yethylf-3,4-dihydroquinazolin-4-one 103-A minoquinazolinone 9^{3} ($5.67 \mathrm{~g}, 27.7 \mathrm{mmol}$), tert-butyldimethylsilyl chloride ($5.00 \mathrm{~g}, 33.2 \mathrm{mmol}$) and imidazole (4.70 $\mathrm{g}, 69.1 \mathrm{mmol})$ were dissolved in DM F ($11 \mathrm{~cm}^{3}$) and stirred at room temperature for 2 days. Water ($30 \mathrm{~cm}^{3}$) was then added and the aqueous layer was extracted with light petroleum $\left(4 \times 50 \mathrm{~cm}^{3}\right)$. The combined organic extracts were washed with brine ($2 \times 50 \mathrm{~cm}^{3}$), dried and reduced to $\sim 20 \mathrm{~cm}^{3}$ by evaporation under reduced pressure Seeding with amino alcohol 9 and scratching the side of the flask removed a small amount of this unchanged starting material, and evaporation of the separated light petroleum gave 3 -aminoquinazolinone 10 as a colourless oil ($7.07 \mathrm{~g}, 80 \%$) identical with that obtained previously. ${ }^{6}$

Aziridination of β-trimethylsilylstyrene 5 with $\mathbf{Q} *$ N H OAc 11

Dichloromethane ($5 \mathrm{~cm}^{3}$) was cooled to $-15^{\circ} \mathrm{C}$, lead tetraacetate (LTA) ($0.76 \mathrm{~g}, 1.2 \mathrm{mmol}$) was added and the solution stirred until the LTA dissolved. A solution of 3 -aminoquinazolinone $10(0.50 \mathrm{~g}, 1.6 \mathrm{mmol})$ in dichloromethane ($2 \mathrm{~cm}^{3}$) was then added with stirring over 5 min and the mixture stirred at $-15^{\circ} \mathrm{C}$ for a further 5 min . A fter cooling to $-30^{\circ} \mathrm{C}$, the mixture was filtered rapidly through a small column containing Celite using a low positive pressure of nitrogen into a stirred solution of β-trimethylsilylstyrene $\mathbf{5}^{15}(0.33 \mathrm{~g}, 1.9 \mathrm{mmol})$ and H M D S ($1.0 \mathrm{~cm}^{3}, 4.7 \mathrm{mmol}$) in dichloromethane ($1 \mathrm{~cm}^{3}$) held at $-30^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm to room temperature over 1 h with stirring before addition of dichloromethane ($10 \mathrm{~cm}^{3}$). A fter washing the mixture with saturated aqueous sodium hydrogen carbonate, the organic layer was separated, dried and the solvent removed under reduced pressure to give an oil (0.77 g).

Chromatography over silica, previously washed with light petroleum-ethyl acetate (4:1) containing 2% triethylamine, and elution with light petroleum-ethyl acetate ($4: 1$) gave ($2 S, 3 \mathrm{~S}$)-1-\{2-[(1S)-1-tert-butyIdimethyIsilyloxyethyl]-4-oxo-3,4-dihydro-quinazolin-3-yl\}-2-phenyl-3-trimethylsilylaziridine 12 ($\mathrm{R}_{\mathrm{F}} 0.30$) ($0.27 \mathrm{~g}, 35 \%$) (Found: $\mathrm{M}^{+}, 493.2580 . \mathrm{C}_{27} \mathrm{H}_{39} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Si}_{2}$ requires M $493.2580) ; v_{\text {max }} / \mathrm{cm}^{-1} 1920 \mathrm{~m}, 1680 \mathrm{~s}$ and $1600 \mathrm{~m} ; \delta_{\mathrm{H}}(1.6: 1$ ratio of N -invertomers); major invertomer (observable signals) 8.15 [d, J 7.5, 5-H (Q)], 5.03 (q, J 6.0, CH OSi), 3.35 (d, J 7.5, CH Ph) and 2.9 (d, J 7.5, CH SiM e 3); minor invertomer (observable signals) 8.05 [d, J $7.9,5-\mathrm{H}(\mathrm{Q})$], 5.25 (q, J 6.0, CHOSi), 3.70 ($\mathrm{d}, \mathrm{J} 7.2, \mathrm{CHPh}$) and $2.10(\mathrm{~d}, \mathrm{~J} 7.2, \mathrm{CHSi})$; signals for both invertomers at 6.9-7.6 (m, 8 H), 1.4 (m), 0.7-1.85 (m) and -0.1 to $-0.2(\mathrm{~m})$, (total 27 H); δ_{c} major diastereoisomer (2 N -invertomers) 163.4 (s), 163.3 (s), 160.3 (s), 159.3 (s), 148.8 (s) 148.6 (s), 140.7 (s), 136.3 (d), 136.0 (d), 134.8 (d), 132.0 (d),
131.6 (d), 131.4 (d), 131.1 (d), 130.7 (d), 130.3 (d), 130.0 (d), 129.5 (d), 129.1 (d), 128.9 (d), 128.8 (d), 124.3 (s), 69.8 (d), 68.6 (d), 55.9 (d), 52.3 (d), 51.3 (d), 46.2 (d), 33.1 (d), 28.6 (q), $24.3(\mathrm{q}), 21.4(\mathrm{~s}), 20.8(\mathrm{~s}), 1.5(\mathrm{q}), 0.4(\mathrm{q})$ and $0.0(\mathrm{q})$; minor diastereoisomer (observable signals) 56.1 (d), 52.3 (d) and 50.8 (d).

Aziridination of β-triethylsilylstyrene 17 with $\mathrm{Q} * \mathrm{NH} \mathbf{O A c} 11$

A solution of $\mathrm{Q} * \mathrm{NHOAc} 11$ in dichloromethane ($10 \mathrm{~cm}^{3}$) was prepared from 3 -aminoquinazolinone 10 ($1.00 \mathrm{~g}, 3.1 \mathrm{mmol}$) and LTA ($1.53 \mathrm{~g}, 3.1 \mathrm{mmol}$) as described above and reacted with a solution of β-triethylsilylstyrene $\mathbf{1 7}^{16}$ ($0.82 \mathrm{~g}, 3.8 \mathrm{mmol}$) containing HMDS ($0.76 \mathrm{~g}, 4.7 \mathrm{mmol}$) in dichloromethane $\left(2 \mathrm{~cm}^{3}\right)$. A fter the work-up described above, chromatography over silica and elution with light petroleum-ethyl acetatetriethylamine (89:9:2) gave (2S,3S)-1-\{2-[(1S)-1-tertbutyldimethylsilylox yethyl]-4-oxo-3,4-dihydroquinazolin-3-yl\}-2-phenyl-3-triethylsilylaziridine $18\left(\mathrm{R}_{\mathrm{F}} 0.49\right)$ as an oil ($0.88 \mathrm{~g}, 40 \%$) (Found: C, 67.65; H, 8.6; N, 7.75. $\mathrm{C}_{30} \mathrm{H}_{45} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Si}_{2}$ requires C, $67.25 ; \mathrm{H}, 8.45 ; \mathrm{N}, 7.85 \%) ; v_{\text {max }} / \mathrm{cm}^{-1} 1680 \mathrm{~s}$ and $1595 \mathrm{~m} ; \delta_{\mathrm{H}}(2: 1$ ratio of N -invertomers) major invertomer (observable signals) 8.20 [d, J 7.5, 5-H(Q)], 6.80-7.60 (m, 8 H), $5.07(\mathrm{q}, \mathrm{J} 7$, CHCH_{3}), 3.40 (d, J 7.9, CHPh), 2.90 (d, J 7.9, CH Si) and 1.40 (d, J 7, CHCH ${ }_{3}$); minor invertomer (observable signals) 5.30 (q, J 6, CHCH ${ }_{3}$), 3.88 (d, J 7.5, CHPh) and 2.15 (d, J 7.5, CHSi); signals from both invertomers at $1.00(\mathrm{~m}), 0.85(\mathrm{~m})$ and 0.00 (m) (total 30 H); $\delta_{\mathrm{c}}(161.3$ and 161.0) (s), (158.3 and 157.3) (s), 146.3 (s), 138.5 (s), 132.7 (d), 134.0 (d), 129.2 (d), 128.9 (d), 128.4 (d), 128.0 (d), 127.1 (d), 126.7 (d), 126.4 (d), 122.0 (s), (67.5 and 66.2) (d), (53.0 and 49.7) (d), 46.4 (d), 42.7 (d), 26.2 (q), 21.9 (d), 20.9 (d), (18.9 and 18.5) (s), 7.9 (q) and 2.7 (t); $\delta_{\mathrm{H}}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$ major diastereoisomer (3.7:1 ratio of N -invertomers) major invertomer (assignable signals) 8.3 [d, J $7.5,5-\mathrm{H}(\mathrm{Q})$], $6.70-7.60(\mathrm{~m}, 8 \mathrm{H}), 5.25\left(\mathrm{q}, \mathrm{J} 6, \mathrm{CHCH}_{3}\right), 3.45(\mathrm{~d}, \mathrm{~J} 7.9, \mathrm{CH}$ Ph), 3.10 (d, J 7.9, CH Si) and 1.40 (d, J 6, CHCH 3); minor invertomer (assignable signals) 5.60 ($\mathrm{q}, \mathrm{J} 6.1, \mathrm{CHCH}_{3}$), 4.30 (d, J 7 , CH Ph) and 2.25 (d, J 7, CH Si); minor diastereoisomer ($\sim 1: 1$ ratio of invertomers) (assignable signals) 4.28 (d, J 7.5, CH Ph), 3.58 (d, J 7.5, CH Ph), 3.32 (d, J 7.5, CH Si) and 2.18 (d, J 7.5, CHSi); the ${ }^{1} \mathrm{H} N M R$ of the crude reaction mixture in $\mathrm{C}_{6} \mathrm{D}_{6}$ showed the ratio of major:minor diastereoisomers as $\sim 13: 1$ from comparison of signal intensity for the aziridine ring protons above; m/z 535 ($\mathrm{M}^{+}, 3.9 \%$), 417 (42.6), 376 (100) and 247 (43.1).

A ziridination of β-triphenylsilylstyrene 19 with $\mathbf{Q} *$ N H OAc 11

A solution of $\mathrm{Q} * \mathrm{NHOAC} 11$ in dichloromethane ($25 \mathrm{~cm}^{3}$) was prepared from 3-aminoquinazolinone $10(2.00 \mathrm{~g}, 6.3 \mathrm{mmol})$ and LTA ($3.05 \mathrm{~g}, 6.9 \mathrm{mmol}$) as described earlier (but without filtration through Celite) and β-triphenylsilylstyrene $19^{16,17}(2.50 \mathrm{~g}$, $6.9 \mathrm{mmol})$ and $\mathrm{HMDS}\left(2.0 \mathrm{~cm}^{3}, 9.4 \mathrm{mmol}\right)$ were added at $-30^{\circ} \mathrm{C}$. A fter reaction and work-up as described previously, the crude product was chromatographed over silica eluting with light petroleum-ethyl acetate (4:1) to give aziridine 20 (1.74 g , $41 \%)$ as a $2: 1$ ratio of diastereoisomers from comparison of the aziridine ring proton signals in the ${ }^{1} \mathrm{H}$ NMR spectrum (see below). Trituration with light petroleum gave the minor diastereoisomer (2R,3R)-1-\{2-[(1S)-1-tert-butyldimethylsilyl-oxyethyl]-4-oxo-3,4-dihydroquinazolin-3-yl \}-2-phenyl-3-triphenylsilylaziridine 20 as a colourless solid, $\mathrm{mp} 151-152^{\circ} \mathrm{C}$ (from ethanol) (Found: $\mathrm{M}^{+} 679.3050 . \mathrm{C}_{42} \mathrm{H}_{45} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Si}_{2}$ requires $\mathrm{M}, 679.3050$); $v_{\text {max }} / \mathrm{cm}^{-1} 1680 \mathrm{~s}$ and 1600 s ; δ_{H} major diastereoisomer ($1.5: 1$ ratio of N -invertomers) major invertomer 8.15 [d, J 7.5, 5-H (Q)], $7.80(\mathrm{~m}, 4 \mathrm{H}), 7.40(\mathrm{~m}, 15 \mathrm{H}), 7.00(\mathrm{~m}, 3 \mathrm{H}), 5.3$ (q, J 6.2, CHCH ${ }_{3}$), 4.20 (d, J ~7.5, CH Ph), 2.90 (d, J 7.5, CH SiPh ${ }_{3}$), $1.05\left(\mathrm{~d}, \mathrm{~J} 6.2, \mathrm{CHCH}_{3}\right), 0.70\left[\mathrm{~s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right]$ and $-0.05[\mathrm{~s}$, $\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}$]; minor N -invertomer (observable peaks) 5.05 (d, J $6.0, \mathrm{CHCH}_{3}$), $4.00(\mathrm{~d}, \mathrm{~J} 7.3, \mathrm{CHPh}$) and $3.40(\mathrm{~d}, \mathrm{~J} 7.3, \mathrm{CHS}$ iPh_{3}); minor diastereoisomer ($1: 1$ ratio of N -invertomers), signals for both invertomers at 8.45 [d, J 7.5, 5-H (Q)], 7.95 (m, 4
$\mathrm{H}), 7.65(\mathrm{~m}, 14 \mathrm{H})$ and $7.35(\mathrm{~m}, 9 \mathrm{H})$, separate signals for invertomers at $5.50\left(\mathrm{q}, \mathrm{J} 6.3, \mathrm{CHCH}_{3}\right), 5.18\left(\mathrm{q}, \mathrm{J} 6.3, \mathrm{CHCH}_{3}\right), 4.95$ (br d, J 7, CH Ph), 4.15 (d, J ~7, CH Ph), 3.55 (d, J 7, CH SiPh ${ }_{3}$), 3.38 (d, J 7, CHSiPh 3), 1.78 (d, J $6.3, \mathrm{CHCH}_{3}$), $1.65(\mathrm{~d}, \mathrm{~J} 6.3$, $\left.\mathrm{CHCH}_{3}\right), 1.08\left[\mathrm{~s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 0.88\left[\mathrm{~s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right]$ and 0.00 , $-0.09,-0.03$ and $-0.10\left[\mathrm{~s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right]$.

Preparation of (2R,3S)-2-cyano-3-phenylaziridine 14 from aziridine 12

A flask containing dry caesium fluoride ($2.37 \mathrm{~g}, 15.6 \mathrm{mmol}$) and potassium cyanide ($0.30 \mathrm{~g}, 4.7 \mathrm{mmol}$) was flame-dried under vacuum then a solution of aziridine $12(0.34 \mathrm{~g}, 1.56 \mathrm{mmol})$ in dry D M F $\left(15 \mathrm{~cm}^{3}\right)$ was added and the mixture stirred overnight under nitrogen. Water ($10 \mathrm{~cm}^{3}$) was then added and the solution extracted with ethyl acetate $\left(10 \mathrm{~cm}^{3}\right)$. The organic extract was washed with brine $\left(3 \times 10 \mathrm{~cm}^{3}\right)$, dried, the solvent evaporated under reduced pressure and the residue chromatographed over silica, eluting with light petroleum-dichloromethane-ethyl acetate ($4: 4: 2$) to give the aziridine $\mathbf{1 4}(0.10 \mathrm{~g}, 76 \%)\left(\mathrm{R}_{\mathrm{F}} 0.27\right.$, stained yellow with vanillin); $[a]_{\mathrm{D}}-153.1$ ((1.0, EtOH); mp 58$60^{\circ} \mathrm{C}(\mathrm{EtOH}) ; v_{\text {max }} / \mathrm{cm}^{-1} 3280 \mathrm{~s}$ and $2220 \mathrm{~s} ; \delta_{\mathrm{H}}\left(-40^{\circ} \mathrm{C}\right)(4: 1 \mathrm{mix}-$ ture of N -invertomers) major invertomer 7.43-7.29 [m, $5 \times$ C-H (Ph)], 3.75 (dd, J 9.6 and 2.5, CHPh), 2.43 (dd, J 7.7 and 2.6, CHCN) and 1.95 (dd, J 9.6 and 7.7, NH); minor invertomer (observable signals) 3.50 (dd, J 9.0 and $2.6, \mathrm{CH}$ Ph), 2.88 (dd, J 9.6 and 2.6, CH CN) and 1.95 (dd, J 9.6 and $9, \mathrm{NH}$); m/z 144 ($\mathrm{M}^{+}, 19.3 \%$), 143 (100), 116 (27.5), 90 (21), 89 (37) and 64 (23).

Reaction of aziridine 14 with (S)-2-acetoxypropionyl chloride

(S)-2-A cetoxypropionic acid ${ }^{3}$ ($0.60 \mathrm{~g}, 4.5 \mathrm{mmol}$) and thionyl chloride ($3.26 \mathrm{~g}, 2.0 \mathrm{~cm}^{3}, 27.4 \mathrm{mmol}$) were stirred at room temperature for 2 h . Excess thionyl chloride was removed under reduced pressure and the residual acid chloride then added to a solution of aziridine $14(0.10 \mathrm{~g}, 0.69 \mathrm{mmol})$ and triethylamine ($0.46 \mathrm{~g}, 4.5 \mathrm{mmol}$) in diethyl ether ($1 \mathrm{~cm}^{3}$) maintained at $0^{\circ} \mathrm{C}$. The resulting solution was allowed to warm to room temperature, stirred overnight, then diluted with diethyl ether (10 cm^{3}), washed with saturated aqueous sodium carbonate (2×10 cm^{3}), dried and the solvent evaporated under reduced pressure. Chromatography of the crude product over silica and elution with light petroleum-ethyl acetate (4:1) gave (2R,3S)-1-[(2S)-2 acetoxypropionyl)-2-cyano-3-phenylaziridine 16 as an oil (0.06 g , 33%) ($\mathrm{R}_{\mathrm{F}} 0.25$) (Found: M^{+}, 258.100. $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires M , 258.100); δ_{H} major diastereoisomer 7.20-7.35 (m, 10 H), 5.00 (q, J 6.9, CHCH_{3}) $4.20(\mathrm{~d}, \mathrm{~J} 2.5, \mathrm{CHCN}$), 2.95 (d, J 2.5, CH Ph), $1.80\left(\mathrm{~s}, \mathrm{COCH}_{3}\right)$ and $1.45\left(\mathrm{~d}, \mathrm{~J} 6.9, \mathrm{CHCH}_{3}\right)$; minor diastereoisomer (observable signals) 5.30 (q, J $6.9, \mathrm{CHCH}_{3}$), $3.90(\mathrm{~d}, \mathrm{~J} 2.5, \mathrm{CHCN}), 3.05(\mathrm{~d}, \mathrm{~J} 2.5, \mathrm{CH}$ Ph) and $1.70(\mathrm{~s}$, COCH_{3}). The ratio of major: minor diastereoisomers was 10 :1 from comparison inter alia of signals at $\delta 4.20$ and 3.90 above in the crude reaction product; $\delta_{\mathrm{c}} 179.0(\mathrm{~s}), 170.9$ (s), 133.2 (s), 130.1 (d), 129.6 (d), 126.5 (d), 114.6 (s), 71.0 (d), 46.1 (d), 29.6 (d), 20.7 (q) and $18.0(\mathrm{q}) ; \mathrm{m} / \mathrm{z} 258\left(\mathrm{M}^{+}, 16.4 \%\right), 198(10), 145$ (13), 144 (90) and 117 (22).

The same acylation procedure of aziridine 14 with (\pm)-(S)-2acetoxypropionyl chloride gave N -acylaziridine 16 as a $1: 1$ ratio of diastereoisomers from comparison of the signals in the ${ }^{1} \mathrm{H}$ NM R spectrum of the product isolated as described above.

H ydrogenolysis- acetylation of aziridine 14

A ziridine 14 ($0.12 \mathrm{~g}, 0.83 \mathrm{mmol}$) and acetic anhydride (0.11 g , 1.04 mmol) were dissolved in ethyl acetate ($10 \mathrm{~cm}^{3}$), palladium (10% on carbon) (0.20 g) was added and the solution hydrogenated at atmosphere pressure overnight. A fter separation of the palladium on carbon, the solution was evaporated under reduced pressure and the crude product chromatographed over silica eluting with light petroleum-ethyl acetate $(7: 3)$ to give (2R)-2-acetamido-3-phenylpropionitrile $15(0.05 \mathrm{~g}, 32 \%)\left(\mathrm{R}_{\mathrm{F}}\right.$ 0.48); $[a]_{\mathrm{D}}+45.1$ (c 0.78, EtOH) \{lit. ${ }^{11}[a]_{\mathrm{D}}-56.8 ;-10.2$ (c
2.5, EtOH) $\left.{ }^{12}\right\} ; \delta_{\mathrm{H}} 7.30[\mathrm{~m}, 5 \times \mathrm{CH}(\mathrm{Ph})], 6.60(\mathrm{~d}, \mathrm{~J} 8, \mathrm{NHCH})$, 5.10 (app., dt, J 8 and 7, CHCN), 3.05 (m, CH ${ }_{2} \mathrm{Ph}$) and 1.95 (s, COCH_{3}); $\delta_{\mathrm{c}} 170.2$ (s), 134.5 (s), 129.8 (d), 129.4 (d), 128.3 (d), 118.7 (s), 42.1 (t), 39.1 (d) and 23.1 (q); m/z 188 ($\mathrm{M}^{+}, 42.4 \%$), 129 (95.8) and 91 (100). A n authentic racemic sample was prepared ${ }^{18}$ by acetylation of 2-amino-3-phenylpropionitrile ${ }^{19}$ with acetic anhydride and pyridine and shown to be identical by ${ }^{1} \mathrm{H}$ NMR comparison.

C onversion of aziridine 18 into aziridine 14

The same procedure described above for conversion of aziridine 12 and 14 was applied to aziridine $18(0.88 \mathrm{~g}, 1.6 \mathrm{mmol})$ using caesium fluoride ($2.25 \mathrm{~g}, 14.8 \mathrm{mmol}$) and potassium cyanide ($0.32 \mathrm{~g}, 4.9 \mathrm{mmol}$) in DM F ($15 \mathrm{~cm}^{3}$). A fter the same work-up, aziridine 14 was obtained ($0.12 \mathrm{~g}, 50 \%$). Reaction with (S)-2acetoxypropionyl chloride-triethylamine as described above gave N -acylaziridine 16 as a 13:1 ratio of diastereoisomers from comparison of signals inter alia at $\delta 4.20$ and 3.90 in the NMR spectrum of the crude reaction product.

C onversion of aziridine 20 into aziridine 14

A $5: 1$ mixture of diastereoisomers $20(0.38 \mathrm{~g}, 0.56 \mathrm{mmol})$, obtained after removal of the bulk of the minor diastereoisomer by trituration with light petroleum (see above), was converted into aziridine 14 ($44 \mathrm{mg}, 55 \%$) using caesium fluoride ($1.77 \mathrm{~g}, 11.7 \mathrm{mmol}$) and potassium cyanide (0.25 g) in D M F (8 cm^{3}) as described above. Reaction with (S)-2-acetoxypropionyl chloride-triethylamine as above gave N -acylaziridine 16 as a 5:1 ratio of diastereoisomers from comparison of signals inter alia at $\delta 4.20$ and 3.90 in the NMR spectrum of the crude reaction product.

A cknowledgements

We thank the SERC (ESPRC) for support.

R eferences

1 F. A. D avis, G. V. Reddy and H. Lui, J. Am. Chem. Soc., 1995, 117, 3651; L. Gentilucci, Y. A rijzen, L. Thijs and B. Zwanenberg, Tetrahedron Lett., 1995, 36, 4665.
2 R. S. A tkinson and B. J. K elly, J. Chem. Soc., C hem. C ommun., 1989, 836.

3 R. S. A tkinson, B. J. K elly and J. Williams, Tetrahedron, 1992, 48, 7713.

4 R. S. A tkinson and B. J. K elly, Tetrahedron Lett., 1989, 30, 2703.
5 Preliminary communication: R. S. Atkinson, M. P. Coogan and I. S. T. L ochrie, Chem. C ommun., 1996, 789.

6 R. S. Atkinson and P. J. Williams, J. Chem. Soc., Perkin Trans. 2, 1996, 205.
7 R. S. A tkinson and B. J. K elly, J. C hem. Soc., Perkin Trans. 1, 1989, 1657
8 R. S. A tkinson, M. J. Grimshire and B. J. K elly, Tetrahedron, 1989, 45, 2875.
9 Previously prepared in racemic form: Y. G elas-M ialhe, G. Touraud and R. Vessière, C an. J. C hem., 1982, 60, 2830
10 L. Thijs, J. J. M . Porskamp, A. A. W. M. Van Loon, M. P. W. D erks, R. W. Feenstra, J. Legters and B. Zwanenberg, Tetrahedron, 1990, 46, 2611.
11 B. A sboth and L. Polgar, B iochemistry, 1983, 22, 117.
12 D. W. Wooley, J. W. B. Hershey and H. A . Jodlawski, J. Org. Chem., 1963, 28, 2012.
13 R. S. A tkinson, M. P. Coogan and I. S. T. Lochrie, Tetrahedron Lett., 1996, 37, 5179
14 R. S. Atkinson, E. Barker, P. J. Edwards and G. A. Thomson, J. C hem. Soc., Perkin Trans. 1, 1996, 1047.

15 J. J. Eisch and M. W. Foxton, J. Org. Chem., 1971, 36, 3520.
16 L. N. Lewis, K. G. Sy, G. L. Bryant and P. E. Donahue, Organometallics, 1991, 10, 3750.
17 M. A. Brook and A. N euy, J. Org. Chem., 1990, 55, 3609.
18 S. A . Thomson, J. M ed. C hem., 1986, 29, 104.
19 P. H. L agriffoul, Z. Tadros, J. Taillades and A . Commeyras, J. C hem. Soc., Perkin Trans. 2, 1992, 1279.

Paper 6/06092G
Received 4th September 1996
A ccepted 17th J anuary 1997

[^0]: \dagger A ssignment of invertomer identities in this major diastereoisomer (Scheme 5) is made on the basis of relative chemical shift positions of the aziridine ring protons (cf. for 12).

